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Abstract. Formal specifications of software systems are extremely useful because they can be rigorously an-
alyzed, verified, and validated, giving high confidence that the specification captures the desired behavior. To
transfer this confidence to the actual source code implementation, a formal link is needed between the specifi-
cation and the implementation. Generating the implementation directly from the specification provides one such
link. A program transformation system such as Paige’s APTS can be useful in developing a source code generator.
This paper describes a case study in which APTS was used to produce code generators that construct C source
code from a requirements specification in the SCR (Software Cost Reduction) tabular notation. In the study, two
different code generation strategies were explored. The first strategy uses rewrite rules to transform the parse
tree of an SCR specification into a parse tree for the corresponding C code. The second strategy associates a
relation with each node of the specification parse tree. Each member of this relation acts as an attribute, holding
the C code corresponding to the tree at the associated node; the root of the tree has the entire C program as its
member of the relation. This paper describes the two code generators supported by APTS, how each was used to
synthesize code for two example SCR requirements specifications, and what was learned about APTS from these
implementations.
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1. Introduction

In developing complex software, an operational specification of the system’s required be-
havior can be extremely useful. Such a specification can be (1) formally verified to show
that critical properties are satisfied and (2) validated using simulation to show that the in-
tended system behavior is captured. Additionally, because specifications contain much less
detail than programs, errors are easier to find in specifications than in programs, and speci-
fications are easier to understand than programming language code. Thus, we can develop
confidence that a specification is correct. Unfortunately, high assurance in the correctness
of the specification does not mean that the implementation of the system is correct, since
the implementation is usually separately developed with no formal link to the specification.
Some confidence in the correctness of the actual code can be achieved by testing, but that
confidence is only as good as the tests used. One way to transfer high confidence in the
specification to the implementation is to automatically generate the implementation code
from the specification, thus eliminating the errors introduced by hand-coding.

∗This research was funded by the Office of Naval Research.
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A program transformation system such as Cai and Paige’s APTS [7, 33, 34] can be
extremely useful in developing an automatic code generator. APTS, which is implemented in
SETL2 [40], is an improved version of Paige’s earlier RAPTS system [31]. APTS includes a
syntax analyzer, a relational database, and a transformation engine. The syntax analyzer uses
a given grammar to parse a specification. The relational database accumulates information
about the specification needed during code generation. Code can be generated either in
the relational database or via the transformation engine. APTS also includes optimization
techniques, such as finite differencing [31, 32], a technique for optimizing code by replacing
frequently repeated calculations with less expensive incremental updates.

Cai and Paige used APTS [7] to implement translators from SETL2 [40] and SQ2+ [6]
to C. This paper describes a case study in which APTS was used to generate C code
from requirements specifications in the SCR (Software Cost Reduction) tabular notation.
Using APTS, two code generation strategies were implemented. One strategy used only the
relational database, and the other used both the relational database and the transformation
engine.

SCR is a formal method for specifying the required behavior of software systems. The
SCR toolset provides a user-friendly interface for writing requirements specifications in
a tabular format and a number of analysis tools, including a consistency checker [18],
a simulator [17], a model checker [16], a theorem prover [2], and an invariant generator
[21, 24]. In the toolset, the specification is displayed as a collection of tables. A context-free
grammar is the underlying communication medium for the different tools. By applying the
SCR tools, a user can develop high confidence that a specification is a correct statement of
the required system behavior.

The SCR method has been used successfully by many organizations in industry and
in government (e.g., Bell Laboratories [20], Grumman [29], Lockheed [10], the Naval
Research Laboratory [16, 25], Ontario Hydro [35], and Rockwell Aviation [30]) to develop
and analyze specifications of practical systems, including flight control systems [10, 30],
weapons systems [16], space systems [9], and cryptographic devices [25]. Most recently,
the SCR tools were used by Lockheed Martin, together with a test case generator, to detect
a critical error described as the “most likely cause” of a $165M failure in the software
controlling landing procedures in the Mars Polar Lander [5].

The next step in developing high assurance systems using SCR is to synthesize (i.e.,
generate) code from the SCR specifications. This paper describes an initial step toward
this goal that uses APTS to explore two possible strategies for code generation from SCR
requirements specifications. The first strategy uses rewrite rules to transform code in the
source language into target language code. The source language used for these experiments
was the SCR specification language and the target language was C. The transformations
modify the parse tree of the requirements specification, replacing each node containing SCR
code with a new node containing the corresponding C code. The second strategy treats the
code to be generated as a synthesized attribute of the parse tree of the SCR specification. A
relation is developed that associates target language code with each node in the parse tree
of the source language program. In the relational model, the code associated with a given
node is formed by combining the code for the node’s children with additional code specific
for the node and the result is stored in a relation. In both strategies, auxiliary information
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(for example, variable dependencies) is stored in relations. Frequently a node of the parse
tree is the key for the relation. In these cases, the relations are analogous to the attributes
in an attribute grammar [26]. Both code synthesizers were implemented using the three
components of APTS described above.

The use in APTS of a relational database to store attribute information has advantages
over traditional attribute grammars. In APTS, information can be passed directly from one
node to any other node via pattern matching in the relational database, while in an attribute
grammar, information must flow along a path through the tree. Although any attribute
grammar can be augmented with auxiliary data structures to hold inherited attributes for
lookup, the relational database used by APTS is an integral part of the system, holding all
attribute information. Also, APTS allows relations to be defined over domains other than
nodes of the parse tree. For example, the tree domain allows attribute information to be
assigned to all nodes representing the same term. Such a tree relation can be used to assign
the same attribute value to all occurrences of a variable at the same time. In contrast, in a
traditional attribute grammar, this information must be passed around the tree.

Our study used APTS because its flexible framework allowed us to experiment with two
different code generation strategies. Also, because both approaches required much of the
same information about an SCR specification, we were able to reuse a large portion of the
first generator in the implementation of the second one. Similar experiments could have
been conducted with other systems, such as REFINE [37] or the Synthesizer Generator [38],
but both rely on attribute grammars and thus suffer from the restrictions on information flow
and absence of built-in auxiliary data structures described above. An additional advantage
of APTS over the Synthesizer Generator is that program transformations in APTS are
automatic rather than interactive as in the Synthesizer Generator and may be conditioned
on information stored in the relations. However, the primary advantage of APTS over
other systems is its built-in optimization capabilities. Although APTS’ finite differencing
capabilities are not used in our current implementations, in the future we plan to apply
optimizations to the specifications by augmenting our APTS-based code generators to use
the APTS finite differencing engine.

This paper is organized as follows. Section 2 reviews APTS and SCR and describes the
C code that can be generated from SCR specifications. Section 3 describes in more detail
the two strategies for generating C code described above, one strategy based on rewrite
rules and the second based on the accumulating relation approach. Section 4 describes
the results of applying the code generators to an SCR requirements specification of a
cryptographic device [25]. It also compares the two strategies and discusses what we learned
by implementing them in APTS. Section 5 discusses related work. Finally, Section 6 presents
some conclusions and describes our plans for future work.

2. Background

2.1. APTS

From a given grammar, the APTS syntax analyzer builds parse trees for input files. Each
node of the parse tree forms the root of a subtree corresponding to the SCR syntax for
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that portion of the specification. The grammar used to specify SCR in APTS is similar to
the abstract grammar described in Appendix A, although in a few places the form of the
grammar used in APTS was modified to allow more convenient transformational processing.
For example, the variable declarations in the abstract grammar are defined by the grammar
rule var decls ::= id (, id)∗ : type, initially init val. Although this syntax is allowed in
APTS, our implementations use the following pair of grammar rules.

scr_var_decl = declist ’:’ type ’,’ ’initially’
init_val ’;’ ;

declist = id | id ’,’ declist;

This change was made because some of the APTS relational database and rewrite rules
need to refer to each identifier in the list individually. In such cases, this alternate form of
the grammar is easier to use.

The relational database is built using a set of inference rules. These rules usually consist
of three parts: a pattern to match a portion of the parse tree, a set of conditions (logical
combinations of relations) under which a new member of a relation is added to the database,
and a result portion stating which new member to add to a relation in the database. Pattern
matching variables, whose names in APTS begin with a dot, are used to correlate portions
of the pattern matching condition with the relations appearing in the rule’s condition and
result portions or to correlate information contained in different relations in the rule. For
example, the following rule states that if an expression composed of two subexpressions
separated by a “>” is found in the parse tree such that the two subexpressions are members
of the arithexpr relation, then the matched expression (denoted by loc()) is added to the
relation boolexpr:

match(%expr, .x > .y%)| arithexpr(.x) and arithexpr(.y)
-> boolexpr(loc());

Relations are predicates whose arguments can be taken from several possible domains.
Frequently, nodes in the parse tree serve as keys for relations. Thus, these relations may
be viewed as attributes of the parse tree. Since there are no restrictions on which relations
can be in the condition of an inference rule for a relation, both synthesized and inherited
attributes can be defined in APTS in terms of relations. However, not every relation in the
implementation need be a parse tree attribute. For example, in SCR specifications, the value
of a variable may depend on the current value of another variable. During execution of the
corresponding C code, the values of variables must be updated in an order that respects
these dependencies. Thus, this dependency information is necessary for code generation.
In the implementations, the dependency relation between variables is implemented as a
relation defined over pairs of strings (the variable names). Relations in APTS are grouped
together into transcripts. To execute a transcript, the inference engine partially instantiates
all applicable rules from the transcript and then nondeterministically tries to complete them
until there are no more rules that can be instantiated.

APTS also allows user-defined SETL2 routines to be used to add relations to the database.
The user specifies an interface in APTS for each SETL2 routine, stating which relations the
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routine receives as input and the relations it will produce upon execution. The SCR-to-C
code generators use a SETL2 routine to calculate the order in which variables are to be
updated based on the information in the dependency relation.

In addition to using the relational database, the code generator based on rewrite rules also
uses the APTS transformation engine. It uses a set of rewrite rules to transform the parse
tree, replacing SCR language constructs with the corresponding C code. These rewrite
rules match a pattern in the tree and if the conditions for the rule are met, the tree is
transformed into the given replacement tree. For example, the rule equal below states that
if an expression consisting of two subexpressions separated by “=” is found in the parse
tree, then that piece of the tree is rewritten in C-style, with the “=” replaced by “==”.
Rewrite rules can be read as matching a piece of the parse tree and if the given conditions
are met, the matched part of the parse tree is replaced by the tree given inside the rewrite.

equal: match(%expr, .x = .y%) |true ->
rewrite(%expr, .x == .y%);

In APTS, rewrite rules are collected into groups called closures. When a closure is applied to
the parse tree, the transformation engine works bottom up on the tree, nondeterministically
applying rules from the closure to the tree until no more rules can be applied. In our
implementation, we apply closures in a certain order to guarantee that certain rules will be
applied before others.

2.2. SCR specifications

Originally formulated to document the requirements of the flight program of the U.S.
Navy’s A-7 aircraft [19], the SCR requirements method is designed to detect and correct
errors during the requirements phase of software development [15, 18]. In SCR, the required
behavior of a software system is defined in terms of monitored and controlled variables,
which represent quantities in the system environment that the system monitors and controls.
A set of assumptions describes the constraints imposed on the monitored and controlled
quantities by physical laws and the system environment, and a relation on the monitored
and controlled variables describes how the system is required to change the values of the
controlled quantities in response to changes in the values of the monitored quantities. A set of
assertions describes properties, such as security and safety properties, that the specification
is expected to satisfy.

To specify the required behavior of a software system in a practical and efficient man-
ner, the A-7 requirements document introduced two kinds of predicates—conditions and
events—and two kinds of auxiliary variables—mode classes and terms. Conditions and
events are defined in terms of the system state, where a system state is a function that maps
each state variable (a monitored, controlled, or auxiliary variable) to a type-correct value. A
condition is a predicate defined on a single system state, while an event is a predicate defined
on two system states that denotes some change in the values of the state variables between
those states. An event “occurs” if it evaluates to true for a given pair of consecutive states.
A monitored event occurs when the value of a monitored variable changes. A conditioned
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event, which has the form “@T(c) WHEN d,” occurs if an event occurs (i.e., condition c
becomes true) when a specified condition d is true. A mode class may be viewed as a state
machine, whose states are called modes and whose transitions are triggered by events. A
term is a state variable, defined in terms of monitored variables, mode classes, or other
terms. Mode classes and terms capture history—the changes that occurred in the values of
the monitored variables—and help make the specification more concise.

SCR specifications include two kinds of tables: condition tables and event tables. Each
defines the value of a dependent variable (a controlled or auxiliary variable) by means of a
mathematical function. Usually, a condition table defines a variable as a function of a mode
and a condition, and an event table defines a variable as a function of a mode and an event.

The purpose of the SCR requirements model [18] is to provide a precise semantics for the
notation used in SCR requirements specifications. The model defines a conditioned event
“@T(c) WHEN d” as

@T(c) WHEN d = ¬c ∧ c′ ∧ d, (1)

where c and d are conditions, and the unprimed c denotes c in the old state and the primed
c denotes c in the new state. The model also defines the functions that can be derived from
the SCR tables. In the SCR model, a software system � is represented as a state machine
� = (S, S0, Em, T ), where S is a set of states, S0 ⊆ S is the initial state set, Em is the
set of monitored events, and T is the transform describing the allowed state transitions. To
compute the new state, the transform T composes the functions derived from the condition
and event tables. For T to be well-defined, no circular dependencies are allowed in the
definitions of the new state variable values. To achieve this, the model requires the new
state dependencies (i.e., dependencies among the new values of the state variables) to be a
partial order of the state variables.

While an SCR specification is represented as a collection of tables, the underlying com-
munication medium between the SCR tools is a context-free grammar. Appendix A contains
an abstract grammar for SCR. This grammar focuses on the basic syntax of the constructs,
omitting the precedence rules needed for unambiguous parsing. The abstract grammar is
similar to the grammars used by our APTS implementations to parse SCR specifications.
However, those grammars contain modifications, including precedence rules, necessary for
unambiguous parsing.

The syntax of the language is best illustrated by an example. Below is the specification
of a simplified version of a control system for safety injection (SIS) in a nuclear power
plant [8]. (The line numbers are not part of the actual specification. They are included for
ease of reference.) The SIS system monitors water pressure and if the pressure is too low,
the system injects coolant into the reactor core. There are three monitored variables in this
specification (lines 9–11).1 The first is mWaterPres, which represents the actual value of
water pressure. The other two monitored variables are switches—mBlock, a switch that
overrides safety injection, and mReset, a switch that resets the system after blockage. An
assumption of the specification is that the water pressure will not change by more than
10 units at a time (lines 18–21). A mode class mcPressure, with three possible values
TooLow, Permitted, and High, associates the pressure with the appropriate range (lines
16–17). At any given time, the system must be in one and only one of these modes. The



PROGRAM SYNTHESIS USING APTS 69

term variable tOverridden (lines 14–15) is true if safety injection is blocked, and false
otherwise. The specification contains one controlled variable, cSafety Injection, which
represents a switch indicating whether safety injection is on or off (lines 12–13). The value
of each dependent variable is defined by a table function. Event tables define the value of the
mode class mcPressure (lines 24–39) and the term variable tOverridden (lines 40–47).
A condition table defines the value of the controlled variable cSafety Injection (lines
48–60). The tabular representations of the function definitions on lines 24–60 may be found
in Appendix B.

1 spec Safety_Injection_System
2 type definitions
3 ySwitch: enum in {Off, On};
4 type_mcPressure: enum in {TooLow, Permitted,High};
5 yWPres: integer in [0, 2000];
6 constant definitions
7 Low=900:integer;
8 Permit=1000:integer;
9 monitored variables
10 mWaterPres: yWPres, initially 0;
11 mBlock, mReset: ySwitch, initially Off;
12 controlled variables
13 cSafety_Injection: ySwitch, initially On;
14 term variables
15 tOverridden: boolean, initially false;
16 mode classes
17 mcPressure: type_mcPressure, initially TooLow;
18 assumptions
19 A1: (mWaterPres’ >= mWaterPres AND mWaterPres’-
20 mWaterPres <=10) OR (mWaterPres’ < mWaterPres
21 AND mWaterPres - mWaterPres’ <= 10);
22 assertions
23 function definitions
24 var mcPressure :=
25 case mcPressure
26 [] TooLow
27 ev
28 [] @T(mWaterPres >= Low) -> Permitted
29 ve
30 [] Permitted
31 ev
32 [] @T(mWaterPres >= Permit) -> High
33 [] @T(mWaterPres < Low) -> TooLow
34 ve
35 [] High
36 ev
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37 [] @T(mWaterPres < Permit) -> Permitted
38 ve
39 esac
40 var tOverridden :=
41 ev
42 [] (@T(mBlock=On) WHEN (mReset=Off AND
43 NOT(mcPressure = High))) -> true
44 [] (@T(mReset=On) WHEN NOT(mcPressure = High))
45 OR @T(mcPressure = High)
46 OR @T(NOT(mcPressure = High))-> false
47 ve
48 var cSafety_Injection ==
49 case mcPressure
50 [] TooLow
51 if
52 [] tOverridden -> Off
53 [] NOT tOverridden -> On
54 fi
55 [] Permitted, High
56 if
57 [] false -> On
58 [] true -> Off
59 fi
60 esac

2.3. C code generated from SCR specifications

An SCR specification contains several sections. Code must be generated from each section.
Additionally, code is needed to drive the reactive program. In practice, this code would be
replaced by the device driver software for the system. This section describes the C code
generated from an SCR specification. The format of the C code to be generated is given
as part of the grammar file in APTS. Our synthesizers produce code that is very closely
related to the SCR specification. This makes correspondence between the specification and
the code easy to observe.

Some pieces of code are generated for every specification. At the beginning of each
generated code file are two file pointers, infile and outfile, which will be associated
with the input and output files that drive the reactive program. Also included are input and
output routines for boolean values (represented internally by the integer constants false =
0 and true = 1).

For every SCR specification, the corresponding C code contains a header file “scr-
header.h”. This header file is exactly the same for every specification and is not generated by
APTS. This file contains definitions of formats for reading and writing strings and integers.
For example, the string output format macro is defined as# define strformout "%s\n".
Defining these format routines in a header file that is not generated by APTS is necessary
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because APTS treats the ‘%’ as a special character that cannot appear in relations or rewrite
rules. The file also contains definitions used by the generated C code. For example, boolean
and integer are defined as additional names for the C type int; and false, true, AND,
OR, and NOT are defined as corresponding C code values and operators. None of these def-
initions is strictly necessary, but they are included to make the C code resemble the SCR
specification.

Type definitions. Both SCR and C support enumerated types. However, unlike C, SCR
allows overloading of value names in enumerated types. To handle this soundly in our
encoding, we simply prepend the type name to each enumerated value. For example, the
value Off of the enumerated type ySwitch in the SCR specification is transformed into
ySwitch Off in the C type definition.

/* type definitions and range declarations */
enum ySwitch { ySwitch_Off , ySwitch_On } ;
typedef enum ySwitch ySwitch ;

Each enumerated type also requires special input and output routines to convert the value
names used in the specification to the corresponding value names used in the C code, and
vice versa.

The user-defined range types in SCR have no counterpart in C. In the generated C code,
the name of the range type becomes an alias for integer, and a check function is created
to correspond to the range of the type. Each time a variable with a range type is assigned
a value, the corresponding check function is called to ensure that the value is within the
specified range. The SIS example contains one range type, yWPres, with the range [0,2000].
Below is the C code corresponding to this range type.

# define yWPres int
void check_yWPres (char * name, int value) { if ((value
< 0) OR (value > 2000)) {printf(" value out of
range : "); printf (strformout, name); } }

Constant definitions. The generated C code for an SCR constant definition is a straight-
forward rearrangement of the SCR definition. Below is the C code generated for the constant
definitions of the SIS example.

/* constant definitions */
const integer Low = 900 ;
const integer Permit = 1000 ;

Variable declarations. In an SCR specification, x represents the value of variable x in
the old state, and x′ represents the value of x in the new state. To refer to both the old
and new values of the variable x , the generated C code represents each variable x in the
SCR specification by two variables, x and prime x. Initial values, if given,2 are defined by
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constants. The name given to these constants is constructed by prepending init val to the
name of the first variable in the declaration. For example, the initial value for mBlock and
mReset is named init val mBlock. Below is the C code corresponding to the declaration
of the monitored variables. The other variable declarations may be transformed into C code
in a similar way.

/* monitored variables */
yWPres mWaterPres; yWPres prime_mWaterPres;

const yWPres init_val_mWaterPres = 0;
ySwitch mBlock, mReset; ySwitch prime_mBlock,
prime_mReset;

const ySwitch init_val_mBlock = ySwitch_Off;

Assumptions and assertions. In SCR, assumptions and assertions are predicates de-
scribing relationships between the variables. These logical formulas may refer to both the
old and new state values of the variables and can use a full range of logical operators.
Event expressions may also appear in predicates and are expanded using definition (1).
Each assumption or assertion in the specification is transformed into an evaluation function
which returns true if the predicate is true and false otherwise. Additionally, two functions,
check assumptions and check assertions, which call these functions and produce an
error message if a predicate is false, are generated if there are assumptions and assertions in
the SCR specification. The violation of an assumption indicates that the input does not obey
the assumed environmental constraints. If an assertion is violated, then the specification does
not satisfy a property that it was expected to satisfy. In the SIS example below, an evaluation
function is generated for the assumption A1 along with the function check assumptions
which calls the evaluation function. There are no assertions in the SIS specification, so the
function check assertions is not generated.

/* assumptions */
boolean eval_A1( ) {return((prime_mWaterPres >=
mWaterPres AND prime_mWaterPres - mWaterPres <= 10 ) OR
( prime_mWaterPres < mWaterPres AND mWaterPres -
prime_mWaterPres <= 10 ) ) ; } ;

void check_assumptions ( ) {
if ( eval_A1( ) == false ) printf (" A1 violated \n ");

}
/* assertions */

Function definitions. As stated in Section 2.2, each dependent variable in an SCR spec-
ification is associated with a function. This function is defined by either a condition or
an event table, describing how the variable’s value is updated when a monitored variable
changes. For each SCR table function, the C code contains a corresponding update function
in which the successful branches assign the newly calculated value to the primed version
of the variable. Each branch of the SCR case statement in a condition table becomes a C
if statement conditioned on the value of the primed version of the mode class variable.



PROGRAM SYNTHESIS USING APTS 73

Each SCR if statement is transformed into a C if-else statement. Below is the C update
function corresponding to the condition table for cSafety Injection. Note that no code
is generated for the false branch (line 57) in the table for cSafety Injection.3 The tables
for mcPressure and tOverridden are transformed into C code in a similar way.

void update_cSafety_Injection ( ) {
if (( prime_mcPressure == type_mcPressure_TooLow )) {

if ( prime_tOverridden ) {
prime_cSafety_Injection = ySwitch_Off ;
fprintf ( outfile , " cSafety_Injection = " ) ;

put_ySwitch ( prime_cSafety_Injection ) ; }
else if ( NOT prime_tOverridden ) {
prime_cSafety_Injection = ySwitch_On ;
fprintf ( outfile , " cSafety_Injection = " ) ;

put_ySwitch ( prime_cSafety_Injection ) ; }
} ;
if ( ( prime_mcPressure == type_mcPressure_Permitted )
OR ( prime_mcPressure == type_mcPressure_High ) ) {
if ( true ) {
prime_cSafety_Injection = ySwitch_Off ;
fprintf ( outfile , " cSafety_Injection = " ) ;

put_ySwitch ( prime_cSafety_Injection ) ; }
} ;

}

Execution code. In addition to generating code from the specification, we also generate
code which executes the specified state machine. The generated code simulates input and
output using text files. Input is from a file which lists monitored events, each specified by
the name of a monitored variable and a value to be assigned to that variable. The execution
model is similar to the execution model of SCR systems used in the translation of SCR into
Promela (the language of the SPIN model checker) by Bharadwaj and Heitmeyer [3] and
can be described (in pseudocode) as follows.

<open files>
state = 0;
<initialize new state variables>;
<check assumptions and assertions>;
while (<infile contains another monitored event> ) {

state = state+1;
<copy new state variables to old state variables>;
<update new state variable corresponding to monitored event>;
<update new state dependent variables in dependency order>;
<check assumptions and assertions>;

}
<close files>
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Separate functions are generated for performing the initialization, copying the variables,
and updating the dependent variables. Note that the dependent variables are updated in an
order consistent with the partial order describing the new state dependencies as discussed
in Section 2.2. The previously generated check assumptions and check assertions
functions are also called by this main routine. All SCR specifications generate a similar
main routine; the only differences are in the names of the update functions for the de-
pendent variables and the updating of the monitored variables in response to monitored
events.

3. Generating C code from SCR specifications

This section describes our implementation of the two strategies for code generation. Both
strategies use many of the same relations in their generation of code. Section 3.1 describes
these relations. Sections 3.2 and 3.3 describe the strategies, the first using rewrite rules and
the second using accumulating relations.

3.1. Relations common to both strategies

To generate C code from an SCR specification, each code generator makes extensive
use of the APTS relational database. Relations are defined to compute and store infor-
mation needed to generate code. In the implementations, some relations have rules that
are conditioned on other relations not holding for a node. Thus, relations that appear
negated in the conditions of rules need to be fully calculated before the rules that con-
tain those negations can be applied. To accomplish this, the relations are organized into
groups called transcripts that can be calculated in the same pass. The transcripts are exe-
cuted in an order that respects the dependencies of relations in one group on relations in
another group. Both code generation strategies require similar information to be stored,
i.e., the variable dependencies, information about the types of expressions, and several
pieces of code that need to be calculated and stored in the nodes before the C code is
generated.

Both strategies need information about variable dependencies. The order in which the
dependent variables are updated depends on the new state dependencies. This dependency
information is calculated by the SCR toolset and then converted into an APTS relation
depend.4 In the SIS example, the rules for depend are as follows:

true -> depend(mcPressure, mWaterPres);
true -> depend(tOverridden, mBlock);
true -> depend(tOverridden, mReset);
true -> depend(tOverridden, mcPressure);
true -> depend(cSafety_Injection, mcPressure);
true -> depend(cSafety_Injection, tOverridden);

These rules can be read as mcPressure depends on mWaterPres, tOverridden de-
pends on mBlock, and so on. This relation is passed to a SETL2 routine that constructs
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a topological sort of the variables with respect to the dependency constraints. The results
of this SETL2 routine are stored in a relation followedby that holds the ordering of the
variables.

Several relations are used to check that the input specification is a valid SCR specifica-
tion. These relations are necessary because in the parsing grammar, expressions, events,
and predicates are condensed into one category. The relations mark the nodes contain-
ing each of these separate types of expression. For example, @T(mBlock = on) is a
member of the eventexpr relation, as is @T(mBlock = on) WHEN (mReset=Off AND
NOT (mcPressure=High)). An additional relation primeexpr marks the nodes contain-
ing primes. Members of the primeexpr relation include mWaterPres′, mWaterPres′ -
mWaterPres, and mWaterPres′ - mWaterPres <= 10. Using the information in these
relations, checks are done to determine whether expressions including primes, events, and
predicates are used only as allowed in the SCR language.

Other relations store information needed to generate the code. For example, each variable
in the generated code has a corresponding primed variable. In the relational database, a
relation primename, associated with a variable in the specification, holds the name to be
used for the primed version of the variable.

match(%declist, .x,.y%)| true
-> primename(.x,concat(’prime_’,str(.x)));

match(%declist, .x %) | isavar(rchild(.x))
-> primename(rchild(.x),concat(’prime_’,str(rchild(.x))));

Most APTS relational database rules first match a specific construct in the parse tree, in this
case, a list of variables that is part of a declaration. (Recall that, in APTS, pattern matching
variables have names beginning with a dot.) In the first rule above for primename, if the
list has the form of an identifier .x followed by a comma and list of identifiers .y, then
we convert the node .x to a string and prepend the string “prime ” to it and associate the
resulting string with the tree at .x. (primename is a relation between trees and strings,
meaning that the string is associated with every instance of the identifier .x in the tree,
not just the instance of .x in the node matched by the rule.) The elements in the list .y are
assigned their prime names by repeated applications of the rules. The first rule handles all
multiple element lists but not single element lists. In the second rule, the match condition
states that .x must be a declist. This match condition will match any declist with any number
of elements. In the second rule, we only wish to match declists with a single element. The
condition that the rightmost child of .x be a variable ensures that the second rule is only
triggered by a single element list. (If the list has multiple elements, the right child of .x will
be a declist, not a variable.) The actual identifier is the child of node .x and this is what
is associated with the new string. Note that when matching more complex patterns, as in
the first rule, APTS is able to associate the pattern matching variables with the children of
the matched node (e.g., .x is the leftmost child), but when the pattern consists of just a single
pattern matching variable, as in the second rule, the pattern matching variable is associated
with the matched node rather than with one of its children, even in the case when there is
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only one child. This makes it necessary to use rchild(.x) to refer to the child in the second
rule.

For enumerated type variables, relations hold the names of the relevant input and output
routines, as described in Section 2.3. Another relation marks the nodes containing obviously
dead code, e.g., branches labeled by false, never, @T(true), or @T(false). In the SIS
example, the branch [] false -> On on line 57 is marked as dead code by the rule below.
No code is generated for such branches. In the rule, loc() refers to the node matched by
the pattern matching portion of the rule.

match(%if_stmt_body, [] false -> .y%) |true
-> deadcode(loc());

Relations are also used to hold some pieces of the C code. This is done when the code
needs to be calculated at one point in the parse tree and generated somewhere else in
the tree. The code for these functions is generated during one of the earlier phases of the
relational database creation and then passed to the transformation engine or used in the
calculation of the code accumulating relation. For example, the code for the C functions
that execute the specification must be placed at the end of the generated code. These func-
tions must contain code for each variable in the specification, and thus the code must be
calculated in the variable declarations portion of the parse tree because that is where the
variables are actually listed. As another example, each value in the list of values for an
enumerated type requires code for reading and writing that value (because of the previ-
ously described conversion between the names used in the specification and the names
used in the code). For example, the inputcode relation will contain a pair composed
of the variable value, On, and the code, if(strcmp(compname = ‘‘On’’) ==0) re-
turn(ySwitch on); else{printf(‘‘not a valid input value\n’’); return
(-1);}. This code is stored in relations because both the input and output routines must
be generated at the node in the parse tree where the entire type definition occurs, not where
the value itself occurs.

3.2. Code generation using rewrite rules

The generation of C code from an SCR specification using APTS rewrite rules is performed
in three steps. First, a grammar is created that combines the language of the specification
and the form of the corresponding C code. Second, relations are defined that capture the
information in the specification. Finally, a set of transformations is defined that replaces the
SCR specification with the corresponding C code.

The transformation-based code generator uses a grammar that combines both the form
of an acceptable SCR specification and the form of the C code corresponding to the spec-
ification. A combined grammar is used so that during transformation, when the tree is a
combination of SCR and C code, it is still a valid program. (This is a design decision that
we made. During transformation APTS does not check that the parse tree remains valid, so
the combined grammar is not strictly required by APTS.) The grammar used gives a parse
tree where the nodes alternate between general structure and language-specific structure.
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For example, consider the following general structure rule from the grammar:

case_ev = scr_case_ev | c_case_ev;

and its corresponding language-specific rules:

scr_case_ev = ’case’ id case_branch_evs ’esac’;
c_case_ev = case_branch_evs ;

A node denoting a case statement in an event table, case ev, has only one child which is
either a node denoting an SCR event table case statement, scr case ev, or a node denoting
the C code corresponding to the event table case statement, c case ev. The SCR event table
case statement is delimited by the keywords ‘case’ and ’esac’ and includes the name
of the identifier whose value the branches are conditioned on. It is also defined in terms
of the general structure node case branch evs, which denotes the branches of the case
statement. The C language-specific node is also defined in terms of case branch evs,
which, in turn, is defined in terms of language-specific nodes denoting the branches. When
the parse tree is initially created from an SCR specification, it contains general structure
nodes alternating with SCR structure nodes. During the transformation process, SCR nodes
are replaced by C nodes, so that at all times during the transformation, we have a valid parse
tree.

Once an input SCR specification is parsed using this grammar, the relational database
inference engine is called. In addition to the relations described in the preceding section,
this code generator needs a new relation checking that the input is a valid SCR specification.
This is necessary because the layered nature of the grammar allows an input file containing
a mix of SCR and C code to be accepted by APTS as being syntactically valid. We check
that only SCR nodes are used in alternation with the general structure nodes.

After the input specification has been parsed and all necessary relations have been calcu-
lated, the SCR specification is transformed into C code. The translation is done in several
stages and the order of these stages matters because the transformations change the parse
tree and thus may cause matches for later transformations to fail.

The first stage of transformation eliminates some of the dead code in the specification. The
dead code on line 57 of the SIS example would be removed by the rewrite ruleif2below. The
match condition matches lists of if-statements where the first member .y is an if-statement
and the second member .x is a list of if-statements. Recall that the node corresponding to
line 57 has already been added to the deadcode relation during the building of the relational
database, so the condition deadcode(.y) will be true. The complete list is replaced in the
parse tree by the second component, eliminating the dead code branch.

if2: match(%scr_if_stmt_bodies, .y .x%) | deadcode(.y)->
rewrite(%scr_if_stmt_bodies, .x%);

The second step replaces enumerated values appearing in constant definitions and variable
declarations with their new type-specific names. For example, the rule below replaces
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TooLow on line 17 of the SIS example with type mcPressure TooLow. The relation
newname contains the type-specific name associated with the identifier.

enum3: match(%var_decl, .x : .t, initially .y;%) |
newname(.y,.z) ->
rewrite(%var_decl, .x : .t, initially .z;%);

The third stage of the transformation converts most of the SCR language into C code. For
example, the rule below replaces the type definition on line 5 of the SIS example with the
corresponding C code given in Section 2.3. The relation rangefun contains the name to
use for the range checking function in the variable .s.

typebody2: match(%scr_type_body, .x : integer in
[.y,.z];%) | rangefun(.x,.s) -> rewrite(%c_type_body,
# define .x int void .s (char * name, int value) {if
((value < .y) OR (value > .z)) {printf("value out of
range:"); printf(strformout, name);}}%);

After this step is complete, the enumerated values remaining in expressions are replaced
with their type-specific counterparts. Following this, the event operators are replaced with
equivalent logical expressions. Finally, each primed expression is replaced with the name of
the corresponding primed variable if the expression is a variable. If the primed expression
is an enumerated value or an integer, then the prime is eliminated. The following are some
of the rewrite rules used to perform these transformations.

equal: match(%expr, .x = .y%) |true ->
rewrite(%expr, .x == .y%);

event1: match(%expr, @T(.x)%) |true ->
rewrite(%expr, ((.x)’) AND NOT(.x) %);

prime2: match(%expr, (.x)’%) | primename(.x,.y) ->
rewrite(%expr, .y%);

prime11: match(%expr, (.x == .y)’%) | true ->
rewrite(%expr, (.x)’ == (.y)’%);

prime18: match(%expr, (.x)’%) | enumval(.x) or isint(.x)
or const(.x) -> rewrite(%expr, .x%);

Each rule above replaces an SCR expression with an equivalent C expression. For exam-
ple, for the SCR event expression @T(x=5), the C code is generated as follows. First, the
node containing this expression is rewritten as @T(x==5) using the equal rule. Then, using
event1, the expression is transformed into ((x==5)′) AND NOT(x==5). Next, prime11
and prime18 are used to place the prime in the correct location, rewriting the expression
first as ((x)′==(5)′) AND NOT(x==5) and then as ((x)′==5) AND NOT(x==5). Finally,
using prime2, the expression is rewritten as (prime x==5) AND NOT(x==5).
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3.3. Code generation using an accumulating relation

An alternative form of code generation relies solely on relations. Instead of transforming the
source code into the target language, the target language code is accumulated in a relation.
This approach keeps the two languages separate and preserves the original parse tree. On
the negative side, it requires a great deal of additional calculation of relations. The relations
used in this method are all but one of those used in the transformation-based method as
well as several additional relations to hold the generated code and a relation to calculate the
primed version of any expression.

Because the purely relational framework keeps the grammars for SCR and C separate,
the parse tree contains only the productions for SCR language constructs. There is no need
for the alternating style used in the parse tree for transformation-based code generation.
Additionally, there is no need for the relation that checks that the input specification is pure
SCR (rather than a mix of SCR and C). Because the grammars for SCR and C are separated,
the input is only accepted by the parser if it is a valid specification in the SCR grammar.
Although it is no longer combined with the SCR grammar, the C grammar is still included
in the APTS grammar specification because it is used to structure the C code kept in the
accumulating relation.

In this framework, additional relations perform the work done by the transformations
in the other approach. A relation prime is used to calculate the primed C version of each
expression so that if the primed form is needed during code generation, it will be available.
The following are some of the rules for calculating prime. The first rule states that the
prime of an identifier is the corresponding primed identifier, stored in relation primename.
The second states that the prime of an integer or a constant is just that integer or constant.
Finally, the third rule states that the prime of an equality expression involving two values
is an equality expression of the primes of those two values. Note that in this inference rule
the ‘=’ used by SCR is replaced by the ‘==’ used by C.

match(%expr, .x%) | primename(.x,.y) ->
prime(loc(),%expr,.y%);

match(%expr, .x%) | isint(.x) or const(.x) ->
prime(loc(),%expr,.x%);

match(%expr, .x = .y%) | prime(.x,.primex) and
prime(.y,.primey)
-> prime(loc(),%expr,.primex == .primey%);

All generated code is also held in relations. The execution code is developed in relations as
previously described. The code generated by rewrite rules in the transformational approach
is, in this approach, also placed in a relation. For each node, the accumulating relation stores
the C code corresponding to the portion of the SCR specification represented by the subtree
rooted at that node. This code is determined by the structure of the tree at that node and
the code associated with the node’s children. The code for the entire program is associated
with the root of the tree.
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The relational database rules listed below perform the same functions as the rewrite rules
if2, enum3, and typebody2 described in Section 3.2. The first rule eliminates the same
dead code as rewrite rule if2 by keeping as the code for the matched node only the code
associated with the pattern variable .x. The second rule uses the type-specific name of an
enumerated value as the C code to be generated for all expressions equivalent to that value,
including the variable declarations handled in the transformation-based code generator by
the rewrite rule enum3. The third relational database rule handles the same situation as
rewrite rule typebody2, associating an SCR range type definition with the corresponding
C code in relation c code.

match(%if_stmt_bodies, .y .x%) | deadcode(.y) and
c_code(.x,.codex)and not(deadcode(loc()))->
c_code(loc(),%c_if_stmt_bodies, .codex%);

match(%expr, .x%) | enumval(.x) and newname(.x,.y) ->
c_code(loc(),%expr,.y%) ;

match(%type_body, .x : integer in [.y,.z];%) |
rangefun(.x,.s)-> c_code(loc(),%c_type_body,
# define .x int void .s (char * name, int value)
{if ((value < .y) OR (value > .z)) {printf("value
out of range:");printf(strformout, name);}}%);

Below are several rules for generating C code for event expressions and other simpler
expressions. The first two rules state that variables and integers in the SCR specification
are not changed in the C code. The third rule calculates the C code for an expression that
checks the equivalence of two expressions by combining the previously calculated code
for each of the subexpressions. The last rule calculates the C code for the “at true” event,
converting it into an equivalent logical expression. Note that this rule assumes that the code
corresponding to the prime value of the expression has already been calculated and is stored
in .primex.

match(%expr, .x%) | not(enumval(.x)) and isavar(.x)
-> c_code(loc(),%expr,.x%);

match(%expr, .x%) | isint(.x) -> c_code(loc(),%expr,.x%);

match(%expr, .x = .y%) | c_code(.x,.codex) and
c_code(.y,.codey) ->
c_code(loc(),%expr, .codex == .codey%) ;

match(%expr, @T(.x)%) |prime(.x,.primex) and
c_code(.x,.codex) ->
c_code(loc(),%expr, (.primex) AND NOT(.codex) %) ;

Consider again the example @T(x=5). Using the relational database rules above and those
given earlier for the relation prime, we can calculate the relations c code and prime for
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each of the subcomponents. For example, using these rules, prime(5) = 5, prime(x) =
prime x, c code(5) = 5, and c code(x) = x. Using these as a basis, we determine the
values of the relation for x=5, namely, prime(x=5) = prime x ==5 and c code(x=5) =
x==5. Now, we can calculate the value of c code for the full expression: c code(@T(x=5))
= (prime x==5) AND NOT (x==5).

4. Discussion

Given an SCR specification, the transformation-based and relation-based strategies gen-
erate exactly the same code. For the SIS example, which generated 293 lines of C code,
the transformation-based strategy required four minutes and the relation-based strategy
required 20 minutes.5 We also used both generators to generate code from the SCR re-
quirements specification for a cryptographic device [25]. This latter specification contains
36 variables and 20 function definitions and is 658 lines long. The translation of the SCR
tabular specification into the SCR grammar used by APTS was done by hand, although such
a translation could be automated. In the second example, the code generator using rewrite
rules required approximately 12 hours to generate 2028 lines of C code. The generator
that accumulated code in a relation required far longer—more than 72 hours. We observed
that the version using rewrite rules spent most of the time building the relational database.
Clearly, a speedup of the APTS relational database inference engine would greatly improve
the execution times for both code generators.

For our purposes, APTS was a useful tool for exploring the two strategies since it con-
tained the means to implement both the relational and transformation-based approaches.
Clearly, the time needed to generate code using APTS is currently too great to use APTS
to construct a production-quality system. Paige had planned a number of improvements
to APTS [34], which he estimated would improve the translation rate by a factor of 6000.
These improvements included translating the SETL2 code of APTS into C (for an expected
speedup factor of 30) and using partial evaluation to convert the APTS interpreters into
compilers (for an expected speedup factor of 10). If these two improvements were made,
the times for generating code for SIS would be in seconds instead of minutes and for the
cryptographic device would be in minutes instead of hours.

While the transformation-based approach generates code more quickly in APTS, the
relation-based strategy is more straightforward. Though many of the rewrite rules are easily
understood because they relate directly to the inference rules used by the relation-based
strategy, the necessary execution ordering of the rewrite rules is less intuitive. It is also
important to note that a purely transformational strategy was impossible because code
sometimes needed to be calculated at one point in the parse tree and generated at a different
point in the tree. In the generator using rewrite rules, this was done by placing the code in
a relation in the relational database and passing it to the transformational engine.

Changing the target language from C to some other language (or modifying the C code to
be generated) would require approximately the same amount of work for both generators.
Most relations used by both strategies refer only to the SCR specification and thus would not
change. For both code generators, the grammar used by APTS would require modification.
With the transformation-based strategy, the C language structures in the interleaved grammar
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would be replaced by the language structures of the new target language. With the relation-
based strategy (or if the translation-based strategy did not use an interleaved grammar),
changing the grammar is even easier. Since the new language need not be interleaved with
the SCR grammar, it can simply be added to the grammar file in place of the C grammar.
Finally, the transformations or the accumulating relation must be modified. In both cases,
the actual conditions for the rules (rewrite or inference) remain the same. What changes is
the result of the rewrite rule or the value stored in the accumulating relation.

It should also be noted that code can be generated for incomplete specifications. In
particular, code can be generated for partial specifications in which all of the dependent
variables have not yet been defined by a table function. Because the code generated for each
function definition is independent of the code generated for any other function definition,
it is possible to generate code separately for each function in the specification. However,
the variable declarations, type definitions, and constant definitions for any variables, types,
and constants used in the table need to be included in the partial specification in order for
code to be properly generated for the table.

The generated C code performs very well. The code for the communications device
processed an input file with 17 monitored events in less than one second. We have no
hand-written C code to which the generated code can be compared, but the SCR toolset
has a simulator [17] that produces Java code to simulate the behavior of the state machine
defined by the specification. Our C code runs faster than the simulator’s Java code, but a
fair comparison of the two is difficult. Java code is generally slower than C code and the
simulator also uses a GUI interface, slowing the running time even more. The simulator
has one advantage over our C code; it has been optimized to update a variable only when
at least one of the variables on which it depends has been changed.

A major contribution of Paige’s research is finite differencing. Although the APTS refer-
ence manual [33] states that APTS contains techniques for optimizing the generated code,
how to use these techniques within APTS is not documented. However, some preliminary
work on how code generated from SCR specifications could be optimized has been done.
One serious source of inefficiency in the generated code is that each new input requires
an update to every variable in the program. One obvious way to reduce this inefficiency,
which is used by the SCR simulator, is to use the variable dependencies (computed auto-
matically by the SCR toolset) to determine which variables could potentially change value
when a given input variable changes value and eliminate updates to the remaining variables.
Information from invariants may also be used to further optimize the variable updates [23].

Other ways to reduce inefficiency are to identify parts of the specification that lead to dead
code and to redundant code and omit code generation for those parts. Our implementations
currently only eliminate the obviously dead code—branches labeled by false and never.
State invariants constructed using the algorithms described in [21, 24] can be used to
identify parts of the specification that lead to dead code or to redundant code [22]. For
example, [21] shows that tOverridden= true → mcPressure �= High is a state invariant
of the SIS specification. This invariant implies that tOverridden cannot change from true
to false if mcPressure = High in the old state. Hence, the disjunct on line 46 of the
SIS specification @T(NOT(mcPressure = High)) may be ignored because it produces
dead code. Similarly, in the specification of an automobile cruise control system, one of
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the automatically generated state invariants is M = Inactive → IgnOn [21]. Hence, the
event @T(Lever=const) WHEN (M = Inactive AND EngRunning AND NOT Brake
AND IgnOn) may be replaced by the equivalent event @T(Lever=const) WHEN (M =
Inactive AND EngRunning AND NOT Brake).

5. Related work

Generating code from specifications is not a new idea. The APTS translators for SETL2
and SQ2+ [7] can be used to translate specifications in these high-level languages into C.
Like APTS, META-AMPHION [28], REFINE [37], and KIDS [39] may be used to design
translators from high-level declarative specifications into executable programs. Moreover,
several commercial tools generate code from specifications. For example, Statemate [13]
generates C or Ada code from Statechart specifications and Telelogic’s SCADE generates C
or Ada code from LUSTRE [12]. Also, a C++ code generator for specifications written in
RSML is discussed in [14]. In [41], C-like imperative code is generated from specifications
given in E-FRP (Event-Driven Functional Reactive Programming) and transformations are
applied to optimize the code. As in SCR, E-FRP variables only change value in response
to events. Interest has been expressed in translating E-FRP into SCR [41].

Our two strategies share similarities with previous code generation methods. Both store
additional information in relations. Many (but not all) of these relations are defined over
nodes in the parse tree, making those relations similar to the attributes used in attribute
grammar systems [26], such as the Synthesizer Generator [38]. Like an attribute grammar,
our relational approach treats the target code as a synthesized attribute of the parse tree for
the specification.

Our use of APTS rewrite rules to generate code is similar to Cai and Paige’s [7] use of
APTS to translate SETL2 and SQ2+ into C. Their translations used rewrite rules to generate
the code, just as our implementation did. One difference between our work and theirs is
that they also made use of APTS built-in finite differencing and dominated convergence
optimizations, while we did not.

Our transformational strategy is also similar to the HATS transformational programming
system [42] in its use of tree rewriting rules. Both HATS and our transformational strategy
use rewrite rules that modify the actual tree to hold the changed code, and both require that
the transformations always produce valid trees. Both also condition the rewrite rules on the
matching of patterns in the trees. One difference is that our APTS-based transformational
strategy also allows the relations to hold additional information and to be used as conditions
for matching in rewrite rules. Another difference between HATS and our approach is that
HATS may sometimes use problem-specific transformations, which our transformational
system does not currently support.

Two other systems, Twig [1] and iburg [11], produce code generators that modify the
parse tree. Unlike APTS, which makes many passes over the parse tree, these code generator
generators work by making only two passes over the parse tree. The first pass finds a set
of minimal cost patterns that cover the tree. The second pass executes the semantic actions
associated with these patterns. Twig and iburg do not replace the code in the tree with
target language code as our transformational system does. Instead, a pattern is matched,
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code associated with the pattern is generated to a file, and then the tree is reduced using the
rewrite rule for the pattern. This process is repeated until the whole tree has been reduced.

As noted in Section 2.3, the code generated by our code generators uses an execution
model similar to the execution model of SCR systems used in the translation of SCR
into Promela [3]. Both use two sets of variables, one for the old state values and one
for the new state values. Both encode the function tables as conditional statements in the
target language and both execute the code for the functions in an order determined by the
dependency relationship on the variables. One difference is that the Promela translation uses
nondeterministic choice to implement the branches in a table, which is impossible in C.
This is not a significant difference (i.e., it does not result in a possibly different semantics),
since the conditions on the branches of a table are required to be disjoint [18], a requirement
that is verified by the consistency checker in the SCR toolset.

6. Conclusion and future work

This paper described our experiments in developing code generators using APTS. Two
different strategies to generate C code from SCR requirements were implemented. One
strategy transforms a parse tree in the specification language into a parse tree in the target
language, while the other accumulates the generated code in a relation associated with
nodes in the specification language parse tree. Both APTS implementations generate the
same code, and both perform a significant amount of analysis before generating code.
Though APTS is currently too slow to be used as part of a production-quality system, it
is likely that implementing the improvements that Paige suggested would lead to a system
that uses a relational database and rewrite rules to generate code at an acceptable speed.

In the future we plan to study the problem of certifying that the generated code is correct,
possibly via translation validation [36]. We also will apply optimizations, such as those
described in Section 4, to SCR specifications.

Appendix A: Simple abstract grammer for SCR

The abstract grammar for SCR presented in this section is a variation of that given by
Bharadwaj and Sims [4]. The rules are given in the form of a Regular Right Part (RRP)
grammar [27]. As discussed in Section 2.1, some rules are replaced by equivalent BNF
grammar rules in the grammars used by APTS.

In the grammar rules below, boldface type is used to indicate tokens in the language. Italics
denotes nonterminals. The metasymbol (· · ·)∗ represents 0 or more occurrences of what is
inside the parentheses. Similarly, (· · ·)+ means 1 or more occurrences of what is inside the
parentheses. Instances of parentheses without the ∗ or + should be read as actual occurrences
of parentheses in the language, i.e., tokens. A vertical bar, |, is used to denote choice.

Formally, an SCR specification begins with the keyword spec and an identifier name
for the specification (line 1 in the example). This is followed by the six sections of the
specification.

spec ::= spec id type defs constant defs var declarations
assumptions assertions function defs
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Type definitions. Users can define their own types in SCR. Two kinds of type definitions
are allowed, an integer range and a list of enumerated values. In addition to these user-defined
types, there are two built-in types, integers and booleans.

type defs ::= type definitions (id: ud type;)∗

ud type ::= integer in [sint, sint]
| enum in { id (, id)∗}

type ::= id
| built in type

built in type ::= integer
| boolean

The SIS example in Section 2.2 contains three user-defined types (lines 2–5).

Constants. Constants are defined by setting the identifier equal to some expression and
declaring the type.

constant defs ::= constant definitions (id = expr: type;)∗

There are two integer constants in the SIS example, Low and Permit (lines 6–8).

Variables. There are four categories of variable declarations, corresponding to the four
types of variables in SCR specifications: monitored, controlled, term, and mode classes.
Each variable is either given an initial value or a “-” is placed in the declaration, signifying
that no initial value is specified.

var declarations ::= monitored variables (var decls;)∗

controlled variables (var decls;)∗

term variables (var decls;)∗

mode classes (var decls;)∗

var decls ::= id (, id)∗: type, initially init val
init val ::= expr

| -

The variable declarations for the SIS example appear on lines 9–17.

Assumptions. The variable declarations are followed by the section containing assump-
tions about the environment. Each assumption is given a name and is defined by a predicate.
Predicates may contain events and expressions involving one or two states. A two-state
expression is one that may use the new value of a variable, denoted x ′, as well as its old
value, x . The syntax for assertions is the same as the syntax for assumptions.

assumptions ::= assumptions (id: predicate;)∗

assertions ::= assertions (id: predicate;)∗
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predicate ::= event
| bool expr prime
| predicate logical op predicate
| (predicate)

The SIS example contains one assumption and no assertions. These two sections can be
found in lines 18–22.

Function definitions. The function definition section contains the functions used to update
the values of variables. In a complete specification, there should be a function for each depen-
dent variable. Two types of tables exist for specifying the update functions, condition tables
and event tables. The start of a new table is indicated by the keyword var followed by the
name of the variable that the table defines. After the variable name comes punctuation indi-
cating whether the variable will be defined by a condition table (==) or an event table (:=).

Moded condition tables (cSafety Injection, lines 48–60) are expressed using a case-
statement. The identifier following the keyword case is the name of a mode class variable.
This is followed by a set of branch statements, each of which begins with a list of identifiers
that are modes of the mode class variable. The semantics selects the branch containing
the mode that is the current value of the mode class variable named in the case-statement.
The if-statement corresponding to this branch is executed. An if-statement contains pairs of
boolean expressions and expressions joined by an arrow. B −> E means that if the boolean
expression B evaluates to true, then the variable is assigned the value of the expression E .

Event tables are defined similarly to condition tables (see mcPressure, lines 24–39).
The only difference is that in place of if-statements, event tables use event statements. An
event-statement contains pairs of events and two state-expressions joined by an arrow. The
semantics of Ev −> E is that if the event Ev evaluates to true, then the variable is assigned
the value of the expression E . If none of the events evaluates to true, then the value of the
variable is not changed.

Unmoded event and condition tables can also be defined. The form of an unmoded table
is the same as one branch of a moded table. The variable tOverridden has its update
function defined by an unmoded event table (lines 40–47).

function defs ::= function definitions (funct def)∗

funct def ::= var id (== cond tab | := event tab)
cond tab ::= case if

| if stmt
case if ::= case id (case branch if)+ esac
case branch if ::= [] id (, id)∗if stmt
if stmt ::= if ([] bool expr −> expr)+ fi
event tab ::= case ev

| ev stmt
case ev ::= case id (case branch ev)+ esac
case branch ev ::= [] id (, id)∗ev stmt
ev stmt ::= ev ([] eventp −> expr prime)+ ve
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Events. There are three basic types of events.@T(B) is true when the value of the expres-
sion B changes from false to true. That is, @T(B) evaluates the boolean expression B in
the old state and the new state and, if B is false in the old state and true in the new state, then
@T(B) is true. Otherwise, it is false. Similarly, the event @F(B) is true when the value of
the boolean expression B changes from true to false. The event @C(E) is true whenever
the value of the expression E in the old state is different from its value in the new state.
Notice that E can be any expression, not just one with a boolean value.

The basic events can be combined with the WHEN and WHENP operators to form
conditional events. The conditional event A WHEN B is true when the basic event A is
true and the boolean expression B is true. WHENP is similar to WHEN except that the
boolean expression following WHENP is allowed to include primed variables.

Logical combinations of events are also allowed. Finally there is a special event, never,
whose presence in an event table indicates that a particular situation cannot occur.

basic event ::= @T(bool expr)
| @F(bool expr)
| @C(expr)

cond event ::= basic event WHEN bool expr
| basic event WHENP bool expr prime

event ::= basic event
| cond event
| event logical op event

eventp ::= event
| never

Expressions. There are two categories of expressions, one-state expressions which de-
scribe the values of variables in a single state, and two-state expressions which may include
the values of variables in both the old and new states. Each category of expressions is
divided into three types based on the type of result they return—arithmetic, enumerated,
and boolean. Arithmetic expressions include signed integers, identifiers that have arith-
metic type, the standard binary operations on arithmetic expressions, and the unary plus
and minus operations. Enumerated expressions are just identifiers having an enumerated
type. (This includes the possible values of an enumerated type.) Boolean expressions consist
of true and false, identifiers of boolean type, and the standard logical operations applied
to boolean expressions. Boolean expressions also include equality checks between pairs
of boolean expressions and pairs of enumerated expressions. All of the basic arithmetic
relational operators are allowed in boolean expressions.

arith expr ::= sint
| id
| arith expr arith op arith expr
| −arith expr
| +arith expr
| (arith expr)
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enum expr ::= id
bool expr ::= bool

| id
| NOT bool expr
| bool expr logical op bool expr
| bool expr = bool expr
| (bool expr)
| enum expr = enum expr
| arith expr rel op arith expr

expr ::= bool expr
| arith expr
| enum expr

The grammar for two-state expressions is similar to that of one state expressions. The only
difference is that primed identifiers, referring to the new state value of the identifier, are
allowed in these expressions.

arith expr prime ::= id′

| arith expr
| arith expr prime arith op arith expr prime
| −arith expr prime
| +arith expr prime
| (arith expr prime)

enum expr prime ::= id′

| enum expr
bool expr prime ::= id′

| bool expr
| NOT bool expr prime
| bool expr prime logical op bool expr prime
| arith expr prime rel op arith expr prime
| (bool expr prime)
| enum expr prime = enum expr prime
| bool expr prime = bool expr prime

expr prime ::= bool expr prime
| arith expr prime
| enum expr prime

Lexical categories. Finally, there are some productions for the basic lexical categories.
Signed integers and the boolean values, true and false, are defined as well as all the standard
relational and arithmetic operators. Note that the logical operators AND and OR can also
be written as && and || respectively.

rel op ::= = | != | > | < | >= | <=
logical op ::= AND | OR | && | ‖
arith op ::= + | − | ∗ | /
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bool ::= true
| false

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
int ::= (digit)+

sint ::= −int | int
alpha ::= a | . . . | z | A | . . . | Z
char ::= alpha

| digit
|

id ::= alpha(char)∗

Appendix B: Specifying a simple control system in SCR

This appendix contains the tabular forms of the function definitions for the Safety Injection
System (SIS) example given in Section 2.2. The mode class mcPressure (see lines 24–39
in the SIS example) is defined by the mode transition table (a special class of event table)
shown in Table 1.

The term tOverridden is defined by an unmoded event table (see lines 40–47 of the
example). The corresponding tabular form is shown in Table 2.

Table 1. Mode transition table for mcPressure.

Old mode Event New mode

TooLow @T(mWaterPres ≥ Low) Permitted

Permitted @T(mWaterPres ≥ Permit) High

Permitted @T(mWaterPres < Low) TooLow

High @T(mWaterPres < Permit) Permitted

Table 2. Event table for tOverridden.

Variable Events

@T(mBlock = On) WHEN @T(mcPressure = High) OR
(mReset = Off AND @T(NOT(mcPressure = High))

NOT(mcPressure = High)) OR @T(mReset = On) WHEN
NOT(mcPressure = High)

tOverridden' True False

Table 3. Condition table for cSafety Injection.

Mode Conditions

High, Permitted True False

TooLow tOverridden NOT tOverridden

cSafety Injection Off On



90 LEONARD AND HEITMEYER

The controlled variable cSafety Injection is defined by a moded condition table (see
lines 48–60). Table 3 shows the tabular form of this definition.
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Notes

1. By convention, the names of monitored variables begin with ‘m’, of controlled variables begin with ‘c’, of
terms begin with ‘t’, and of mode classes begin with ‘mc’. The names of user-defined types begin with ‘y’, and
the names of types associated with mode classes begin with ‘type ’.

2. In SCR specifications, the initial value of a dependent variable can often be derived from the initial values of
variables upon which the variable depends.

3. The entry false in the table defining cSafety Injection (see Table 3 in Appendix B) is an artifact of the
tabular format. It means that cSafety Injection is never equal to ON when the mode is High or Permitted
and would therefore correspond to dead code.

4. The conversion is currently done by hand but would be easy to automate.
5. Execution times are for a Sun Ultra 450 with 2 UltraSPARC-II 296 MHz CPUs and 2 GB memory, running

Solaris 5.6.
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